Gaoyong Zhang
Professor
Mathematics
- Phone: (718) 260-3695
- Email: gzhang@poly.edu
- Location: RH 305F
- Website:
- www.math.poly.edu/~gzhang
- sites.google.com/site/gaoyongzhang/

Education
Temple University, Class of 1995
Doctor of Philosophy, Mathematics
Wuhan University of Science and Technology, Wuhan University, Class of 1986
Master of Science, Mathematics
Wuhan University of Sci & Tech, Wuhan University of Technology, Class of 1982
Bachelor of Science, Mathematics
Experience
Polytechnic Institute of New York University
Professor
From: October 2000 to present
Polytechnic Institute of New York University
Assistant Professor
From: October 1997 to August 2000
University of Pennsylvania
Rademacher Lecturer
From: October 1995 to July 1997
Institute for Advanced Study
Member
From: January 1996 to August 1996
Wuhan University of Science and Technology
Lecturer
From: October 1986 to August 1991
Courses Taught
Calculus, Linear Algebra, Mathematical Analysis, Real Analysis, Probability, Stochastic Process, Matrix Theory, Abstract Algebra, Differential Geometry, Differential Equations, Differentiable Manifolds, Integral Transforms, Geometric Probability, Integral Geometry.
Research Interests
Convex geometry
Geometric analysis
Integral geometry
Awards + Distinctions
Fellow of the American Mathematical Society
Event Participation
American Mathematical Society
Journal Articles
- E. Lutwak, S. Lv, D. Yang, and G. Zhang, Affine moments of a random vector, IEEE Trans. Info. Theory (2013) (accepted for publication).
- K.J. Boroczky, E. Lutwak, D. Yang, and G. Zhang, The logarithmic Minkowski problem, Journal of AMS, (electronic publication in June, 2012).
- K.J. Boroczky, E. Lutwak, D. Yang, and G. Zhang, The log-Brunn-Minkowski inequality, Adv. Math. 231 (2012), 1974--1997.
- E. Lutwak, S. Lv, D. Yang, and Zhang, Extensions of Fisher information and Stam's inequality, IEEE Trans. Info. Theory 58 (2012), 1319--1327.
- E. Lutwak, D. Yang, and G. Zhang, The Brunn-Minkowski-Firey inequality for nonconvex sets, Adv. Appl. Math. 48 (2012), 407--413.
- G. Bianchi, D. Klain, E. Lutwak, D. Yang, and G. Zhang, A countable set of directions is sufficient for Steiner symmetrization, Adv. Appl. Math. 47 (2011), 869--873.
- M. Ludwig, J. Xiao, and G. Zhang, Sharp convex Lorentz-Sobolev inequalities, Math. Ann. 350 (2011), 169--197.
- C. Haberl, E. Lutwak, D. Yang, and G. Zhang, The even Orlicz Minkowski problem, Adv. Math. 224 (2010), 2485--2510.
- E. Lutwak, D. Yang, and G. Zhang, Orlicz centroid bodies, J. Differential Geom. 84 (2010), 365--387.
- E. Lutwak, D. Yang, and G. Zhang, A volume inequality for polar bodies, J. Differential Geom. 84 (2010), 163--178.
- E. Lutwak, D. Yang, and G. Zhang, Orlicz projection bodies, Adv. Math. 223 (2010), 220--242.
- A. Cianchi, E. Lutwak, D. Yang, and G. Zhang, Affine Moser-Trudinger and Morrey-Sobolev inequalities, Calculus of Variations and PDEs 36 (2009), 419--436.
- E. Lutwak, D. Yang, G. Zhang, Moment-entropy inequalities for a random vector, IEEE Trans. Info. Theory 53 (2007), 1603--1607.
- E. Lutwak, D. Yang, G. Zhang, Volume inequalities for isotropic measures, Amer. J. Math. 129 (2007), 1711--1723.
- E. Lutwak, D. Yang, G. Zhang, Optimal Sobolev norms and the Lp Minkowski problem, International Math. Res. Notices, (2006), No. 1, 1--21.
- D. Hug, E. Lutwak, D. Yang, and G. Zhang, On the L_p Minkowski problem for polytopes, Discrete Comput. Geom. 33 (2005), 699--715.
- E. Lutwak, D. Yang, and G. Zhang, L_p John ellipsoids, Proc. London Math. Soc. 90 (2005), 497--520.
- E. Lutwak, D. Yang, and G. Zhang, Cramer-Rao and moment-entropy inequalities for Renyi entropy and generalized Fisher information, IEEE Trans. Info. Theory 51 (2005), 473--478.
- E. Lutwak, D. Yang, and G. Zhang, Volume inequalities for subspaces of L_p, J. Differential Geom. 68 (2004), 159--184.
- B. Rubin and G. Zhang, Generalizations of the Busemann-Petty problem for sections of convex bodies, J. Funct. Anal. 213 (2004), 473--501.
- E. Lutwak, D. Yang, and G. Zhang, On the L_p-Minkowski problem, Trans. Amer. Math. Soc. 356 (2004), 4359-4370.
- E. Lutwak, D. Yang, and G. Zhang, Moment-entropy inequalities, Annals of Prob. 32 (2004), 757--774.
- E. Lutwak, D. Yang, and G. Zhang, Sharp affine L_p Sobolev inequalities, J. Differential Geom. 62 (2002), 17--38.
- E. Lutwak, D. Yang, and G. Zhang, The Cramer--Rao inequality for star bodies, Duke Math. J. 112 (2002), 59--81.
- E. Lutwak, D. Yang, and G. Zhang, A new affine invariant for polytopes and Schneider's projection problem, Trans. Amer. Math. Soc. 353 (2001), 1767--1779.
- E. Lutwak, D. Yang, and G. Zhang, L_p affine isoperimetric inequalities, J. Differential Geom. 56 (2000), 111--132.
- E. Lutwak, D. Yang, and G. Zhang, A new ellipsoid associated with convex bodies, Duke Math. J. 104 (2000), 375--390.
- J. Bourgain and Gaoyong Zhang, On a generalization of the Busemann-Petty problem, Convex geometric analysis (Berkeley, CA, 1996), 65--76, Math. Sci. Res. Inst. Publ., 34, Cambridge Univ. Press, Cambridge, 1999.
- E. Grinberg and Gaoyong Zhang, Convolutions, transforms, and convex bodies, Proc. London Math. Soc. 78 (1999), 77--115.
- Gaoyong Zhang, Dual kinematic formulas. Trans. Amer. Math. Soc. 351 (1999), 985--995.
- Gaoyong Zhang, A positive solution to the Busemann-Petty problem in R^4, Ann. of Math. (2) 149 (1999), 535--543.
- Gaoyong Zhang, The affine Sobolev inequality, J. Differential Geom. 53(1999), 183--202.
- R. J. Gardner and Gaoyong Zhang, Affine inequalities and radial mean bodies, Amer. J. Math. 120 (1998), 505--528.
- P. Goodey and Gaoyong Zhang, Inequalities between projection functions of convex bodies, Amer. J. Math. 120 (1998), 345--367.
- E. Lutwak and Gaoyong Zhang, Blaschke-Santalo inequalities, J. Differential Geom. 47 (1997), 1--16.